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ABSTRACT 
To address the high-performance challenges of data transfer 
in the big data era, we are developing and implementing 
mdtmFTP: a high-performance data transfer tool for big 
data. mdtmFTP has four salient features. First, it adopts an 
I/O centric architecture to execute data transfer tasks. 
Second, it more efficiently utilizes the underlying multicore 
platform through optimized thread scheduling. Third, it 
implements a large virtual file mechanism to address the 
lots-of-small-files (LOSF) problem. Finally, mdtmFTP 
integrates multiple optimization mechanisms, including—
zero copy, asynchronous I/O, pipelining, batch processing, 
and pre-allocated buffer pools—to enhance performance. 
mdtmFTP has been extensively tested and evaluated within 
the ESNET 100G testbed. Evaluations show that mdtmFTP 
can achieve higher performance than existing data transfer 
tools, such as GridFTP, FDT, and BBCP.  

Categories and Subject Descriptors 
C.2.2 [Network Protocols]: Applications;  
C.2.4 [Distributed Systems]: Client/server 

General Terms 
Algorithms, Performance, Design 

Keywords 
Multicore, data transfer, high-speed networking. 

 

1. Introduction 
Big data has emerged as a driving force for scientific 
discoveries [1]. Large scientific instruments (e.g., colliders, 
light sources, and telescopes) generate exponentially 
increasing volumes of data. Currently, Large Hadron 
Collider (LHC) experiments generate hundreds of petabytes 
of data per years. The aggregated amount of climate science 
data is projected to exceed 100 exabytes by 2020. To enable 
scientific discovery, science data must be collected, indexed, 
archived, shared, and analyzed, typically in a widely 
distributed, highly collaborative manner [2-7]. At present, 
computing facilities for large-scale science, such as ALCF, 
OLCF, and NERSC, offer the types of computing and 
storage resources needed to process and analyze science 
data. The efficient movement of science data from their 
sources into processing and storage facilities and ultimately 
to user analysis is critical to the success of any such 
endeavor. Data transfer is now an essential function for 
science discoveries, particularly within big data 
environments. 

Within the DOE research community, the emergence of 
distributed, extreme-scale science applications is generating 
significant performance challenges regarding data transfer 
[2-7]. First, it is becoming essential to transfer data at the 
highest possible throughputs to deal with exponentially 
growing volumes of science data. Second, DOE is in the 
process of deploying extreme-scale supercomputer facilities 
to support its extreme-scale science applications. To 
maximize utilization of  these very high cost computing 
facilities, ultra-high-throughput data transfer capabilities 
will be required to move data in and out of them. 

To date, several data transfer tools (e.g., GridFTP [8-9] 
and BBCP [10]) have been developed to support bulk data 
movement. Advanced data transfer features, such as transfer 
resumption, partial transfer, third-party transfer, and 
security, have been implemented in these tools and services. 
There have also been numerous enhancements to speed up 
data transfer performance. Parallelism at all levels (e.g., 
multi-stream parallelism [8] and multi-path parallelism [12-
15]) is now widely implemented in bulk data movement, 
providing  significant improvement in aggregate data 
transfer throughput.  

Although significant improvements have been made in 
the area of bulk data transfer, the currently available data 
transfer tools will not be able to successfully address the 
high-performance challenges of data transfer in big data era 
for the following reasons: 
• Existing data transfer tools are unable to fully exploit 

multicore hardware under the default OS support, 
especially on NUMA systems. 

• Existing data transfer tools are unable to effectively 
address the lots of small files (LOSF) problem [16]. The 
state-of-the-art solutions to the LOSF problem—
pipelining, concurrency, and tar-based solution—are 
either inefficient, or do not scale well. 

To address these challenges, we have developed and 
implement mdtmFTP: A High-performance Data Transfer 
Tool in Big Data Era. mdtmFTP has been extensively tested 
and evaluated within the ESNET 100G testbed. Our 
evaluations show mdtmFTP can achieve higher performance 
than existing data transfer tools.  

DOE’s Advanced Scientific Computing Research 
(ASCR) office has funded Fermilab to work on Multicore-
Aware Data Transfer Middleware (MDTM) [11]. mdtmFTP 
is the latest outcome of this research effort. mdtmFTP 
software is available at http://mdtm.fnal.gov. 



2. mdtmFTP 
mdtmFTP is a high-performance data transfer tool that 
builds upon the MDTM middleware (Figure 1). It has the 
following salient features:  
• It adopts a pipelined I/O-centric architecture to execute 

data transfer tasks. Dedicated I/O threads are spawned 
to perform network and disk I/O operations.  

• It utilizes MDTM middleware services to make optimal 
use of the underlying multicore system.  

• It implements a large virtual file mechanism to address 
the LOSF problem.  

• Zero copy, asynchronous I/O, pipelining, batch 
processing, and buffer pools mechanisms are applied to 
optimize  performance. 
 

 

 
Figure 2 A Pipelined I/O Centric Design 

 
2.1 A pipelined I/O centric design 
Multicore has become the norm of high-performance 
computing. In order to take full use of the underlying 
multicore processing capability, mdtmFTP adopts a 
pipelined I/O centric design. A data transfer task is carried 
out in a pipelined manner across multiple cores. Dedicated 
I/O threads are spawned to perform network and disk I/O 
operations in parallel (Figure 2). 

mdtmFTP handles two types of I/O device, 
storage/disk(s) and NIC(s). Depending on a device’s I/O 
capability, one or multiple threads are spawned for each I/O 
device. Typically, four types of I/O threads will be spawned: 
• Disk/storage reader threads to read data from disks or 

storage systems. 
• Disk/storage writer threads  to write data to disks or 

storage systems. 
• Network sender threads to send data to networks via 

NIC. 
• Network receiver threads to  receives data from 

network via NIC.	

In addition to the I/O threads, mdtmFTP spawns 
management threads to handle user requests, and 
management-related functions.  
 mdtmFTP calls MDTM middleware scheduling service 
to schedule cores for its threads. For each I/O thread, MDTM 
middleware first selects a core near the I/O device (e.g., NIC 
or disk) the thread uses, and then pins the thread to the 
chosen core. This strategy has two benefits: (1) it enforces 
I/O locality on NUMA systems; (2) it avoids I/O thread 
migrations, thus providing core affinity for I/O operations. 
Therefore, mdtmFTP performance can be significantly 
improved. Typically, an I/O thread is dedicated with a single 
core. No other threads will be scheduled to a core that an I/O 
thread has been assigned to. 

In addition, MDTM middleware partitions system cores 
into two zones – MDTM zone and non-MDTM zone. 
mdtmFTP runs in the MDTM-zone while other applications 
are confined within the non-MDTM-zone. This strategy 
reduces other applications’ interference to mdtmFTP, thus 
resulting in optimum data transfer performance. 

High-performance data transfer involves a significant 
amount of memory buffer operations. To avoid costly 
memory allocation/deallocation in the critical data path of 
data transfer,  mdtmFTP pre-allocates multiple data buffers, 
and manages them in a data buffer pool. Data buffers are 
pinned and locked so as to avoid being paged to the swap 
area and memory migration. Data buffers are recycled and 
reused. 

mdtmFTP executes data transfers in a pipelined manner. 
In the sender, management threads first preprocess data 
transfer requests. A data transfer task is typically split into 
multiple subtasks. A subtask can comprise file segments, a 
group of files, or file folders. Subtasks are then put in a task 
queue. Disk/storage reader threads keep fetching subtasks 
from the task queue. For each subtask, data will be first 
fetched from storage/disk(s) into empty buffers. Filled data 
buffers are temporarily put in a buffer queue. Concurrently, 
network sender threads continue fetching filled data buffers 
from the buffer queue, and send data to the network in 
parallel on multiple TCP streams. In the receiver, data will 
be received into empty buffers via network receiver threads; 
afterwards, the filled buffers will be passed over to 
storage/disk writer threads to store data into storage/disk(s). 
 

2.2 MDTM middleware service 
To achieve higher scalability and efficiency, most existing 
OS schedulers  use a distributed run-queue model, in which 
the scheduler maintains one run queue per core. The 
scheduler applies a thread-independent scheduling policy, 
which schedules threads independently, regardless of 
application types and dependencies. Periodically, the 
scheduler balances the load across cores to facilitate load 
balance. In the case of NUMA systems, the balancing is 
across all NUMA nodes. When data transfer applications run 
on multicore systems, dynamic load balancing may result in 
frequent thread migration, or leading to high-latency inter-
node communications, which would significantly degrade 
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the overall data transfer performance. Furthermore, I/O 
devices (e.g., NIC and storage) on NUMA systems are 
connected to processor sockets in a NUMA manner. This 
results in NUMA effects for transfer between I/O devices 
and memory banks, as well as CPU I/O access to I/O devices. 
Investigations show that I/O throughputs can be significantly 
improved if applications can be placed on cores near the I/O 
device they use (i.e., I/O locality) [19, 20]. However, 
existing OSes have very limited supports for such IO 
locality. Processes/threads may end up being scheduled on 
cores that are distant from the I/O devices they use, leading 
to high-latency inter-node I/O operations and incurring extra 
communication overheads. Bulk data transfers involve 
significant network and disk I/O operations. Using default 
OS scheduling can lead to significant inter-node I/O 
operations and severely degrade the overall data transfer 
performance.   

MDTM middleware has been developed to address 
these problems. It is a user-space resource scheduler that 
harnesses multicore parallelism to scale data movement 
toolkits at multicore systems.  

MDTM middleware is implemented as a system 
daemon. Periodically, the daemon collects, monitors, and 
caches information about the multicore system physical 
layout (e.g., NUMA topology), configurations, and system 
loads. Using this information, MDTM middleware will 
provide query and scheduling services to the data transfer 
tool, mdtmFTP. 

Today, MDMT middleware supports the following 
features: 
• Computer system layout profiling. 
• Real-time system status monitoring: (a) CPU usage of 

each core, and (b) memory load latency of each NUMA 
node. This feature allows mdtmFTP to use system 
resources (cores and data buffers) intelligently to avoid 
overloading particular cores or NUMA nodes. 

• NUMA topology-based core scheduling, which 
supports I/O locality (see section 2.1). 

• Supporting core affinity on I/Os 
• System zoning,	 which	 partitions	 system	 cores	 into	

two	 zones	 –	 MDTM	 zone	 and	 non-MDTM	 zone.	
mdtmFTP	 runs	 in	 the	 MDTM-zone	 while	 other	
applications	are	confined	to	run	in	the	non-MDTM-
zone. 

• Data buffer allocation and pinning capability				
 
MDTM middleware was designed to support mdtmFTP. 
However, it can be readily extended to support other types 
of applications. Or, it can be used to study advanced 
scheduling algorithms and policies on NUMA systems. 
 
2.3 A large virtual file mechanism to address 
the LOSF problem 
Existing data transfer tools are unable to effectively address 
the LOSF problem. GridFTP uses pipelining and 
concurrency to address the inefficiency in LOSF. However, 

GridFTP’s data transfer performance is not satisfying [see 
section 3.3]. Some data transfer applications such as BBCP 
[10] make a tar ball of the dataset and then transfer the tar 
ball as one file. The problem is the “tar” process might 
involve significant amount of disk/memory operations, 
which is normally costly and slow. FDT adopts a data stream 
mechanism to stream a dataset (list of files) continuously, 
using a managed pool of buffers through one or more TCP 
sockets [18]. However, FDT failed in an experiment we 
designed to evaluate its capability in addressing the LOSF 
problem (see section 3.3).  

mdtmFTP implements a large virtual file mechanism to 
address the LOSF problem. The mechanism works as shown 
in Figure 3. 
1. A mdtmFTP sender receives a request to transfer a 

dataset to a mdtmFTP receiver. The sender quickly 
traverses the dataset, and creates a large “virtual” file for 
the dataset. Logically, each file in the dataset, which 
include regular files, folders, and symbolic links, is 
treated as a file segment in the virtual file. Each file in 
the dataset is sequentially “added” to the virtual file with 
start position and end position. The virtual file is not 
physically created. Instead, a content index table is 
created to maintain metadata for the virtual file. The 
content index table consists of entries. Each entry 
corresponds to a file in the dataset. It records the file’s 
metadata, such as file name, path, type, and its start and 
end positons in the virtual file. 

2. The sender serializes the content index table and 
transmits it to the receiver. 

3. The receiver deserialize and reconstructs the content 
index table, and then asks for data transfer. 

4. Using the content index created earlier, the sender 
continuously reads data blocks from disk and sends 
them out to networks. The whole dataset is transferred 
continuously and seamlessly as a single virtual file in 
one or multiple TCP streams. 

5. When receiving a data block from the sender, the 
receiver first looks up the content index table to 
determine which file the data block belongs to and its 
positon with the file, and then store the data block into 
disk/storage.  

 
Our large virtual file mechanism has two benefits: (1) it 
eliminates protocol processing between the sender and 
receiver on a per-file basis. And (2) it allows for batch 
processing small files in the sender and receiver. Therefore, 
I/O performance can be optimized.  
 



 
Figure 3 Large virtual file transfer mechanism 

 

3. mdtmFTP evaluation @ ESNET testbed 
3.1 ESnet testbed 
We evaluated mdtmFTP within the ESNET 100GE testbed, 
using high performance systems at NERSC (Oakland, CA) 
[17]. This testbed focuses on high performance data plane 
experiments, providing sufficient computing/IO resources. 
The topology of the testbed is shown in Figure 4. 

To emulate a wide area network (WAN) path, our tests 
utilized a path with a latency of 95ms RTT. The path was 
created using a loop on a 100GE circuit between NERSC and 
the StarLight network exchange (Chicago).  

Our tests were run on the testbed performance hosts, 
which were designed to support experimentations that 
require very fast networking or disk operations. Those hosts, 
nersc-tbn-1 and nersc-tbn-2 are located in Oakland, 
California and are typically used as source and sink of data 
between themselves using the 100GE dedicated 95ms loop. 

Those hosts are running Proxmox hypervisors. Users 
are given a dedicated Linux container with root access. 
Network interfaces are attached to the Linux containers. 
Containers are similar to “bare metal” access on a host, and 
have similar performance. The container technology that we 
used on the testbed is called Proxmox, and the underlying 
Operating system was Ubuntu 12. This means that no matter 
what OS is running in the container, the experiment will be 
using the Ubuntu TCP stack. 

 
Figure 4 ESnet Testbed 

3.2 Evaluation methodology 
We ran data transfer from “nersc-tbn-2” to “nersc-tbn-1”. In 
our evaluation, mdtmFTP was compared with FDT, 
GridFTP, and BBCP. For fair comparisons, all the tools were 
configured with the same parameters—I/O block size and 
the number of parallel streams. The detailed configurations 
are listed in Table 1.  
 

Tools	 Streams	 Pipelining	 Concurrency	 TCP/IP	
Parameter	

FDT	 4	 N/A	 N/A	 Default*	

GridFTP	 4	 -PP	 -CC	8	 Default*	

BBCP	 4	 N/A	 N/A	 Default*	

mdtmFTP	 4	 N/A	 2	I/O	Threads	 Default*	

*System configuration. 

Table 1 Testing Configuration 

We were investigating two transfer modes: client-server and 
third-party. In the client-server mode, the client starts the 
transfer task and also takes the role as either data source or 
data destination. In the third-party mode, the client starts the 
transfer task but the data is exchanged between two other 
servers. 
 Three data transfer scenarios were evaluated: (1) Large 
file trafer, which transfers a 100GByte large file from nersc-
tbn-2 to nersc-tbn-1. (2) Folder transfer 1, which transfers a 
folder that has 30 10G files from nersc-tbn-2 to nersc-tbn-1.  
It aims to evaluate a tool’s capability in transferring folders 
with large files.  And (3) Folder transfer 2, which tranfers a 
Linux folder that is ~554 MBytes in total, and contains 
~50,000 files of various sizes and types. It aims to evaluate 
a tool’s capability in addressing the LOSF problem. 
 Time-To-Completion (TTC) is used as the performance 
metric. For better comparion, we used GridFTP as base and 
calculated the Relative Performace Improvement (RPI), 
which is defined as: 
 

𝑅𝑃𝐼 =
𝐺𝑖𝑟𝑑𝐹𝑇𝑃+𝑠	𝑇𝑇𝐶
𝑂𝑡ℎ𝑒𝑟	𝑡𝑜𝑜𝑙+𝑠	𝑇𝑇𝐶
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3.3 Evaluation results 
a. Large Single File Transfer: Client-Server 

Mode 
The first comparison is to transfer a single large file with the 
size of 100GB from nersc-tbn-2 to nersc-tbn-1. The results 
are listed in Table 1. The relative performance comparison 
is depicted in Figure 5. It can be seen that mdtmFTP is 
approximately 14% faster than FDT, and ~20% faster than 
GridFTP as shown in Figure 4. BBCP takes much longer 
time to finish the transfer and therefore is not included in the 
figure. 

 
 mdtmFTP FDT GridFTP BBCP 

TTC (second) 74 80 91 Poor 

Table 1 TTC - Large file data transfer (smaller is better) 

 
Figure 5 RPI - Large File Transfer (larger is better) 

 

b. Folder Transfer: Client-Server Mode 
For folder transfers, the results are shown in Table 2 and 3. 
The relative performance comparisons are illustrated in 
Figure 6 and 7. 

In both folder transfer scenarios, mdtmFTP performs 
better than existing data transfer tools. Especially with folder 
transfer #2, mdtmFTP is hundreds of times faster than 
GridFTP and BBCP. For folder transfer #2, the Linux folder 
is ~554 MBytes in total, and contains ~50,000 files of 
various sizes and types. This is a tpical LOSF scenario. The 
experiment clearly show that mdtmFTP is able to address the 
LOSP problem effectively.  

To our surprise, FDT crashed in folder transfer #2. It 
seems like that FDT has bugs in handling folder data 
transfer. 

 mdtmFTP FDT GridFTP BBCP 
TTC (second) 192 217 320 Poor 

Table 2 TTC Folder transfer 1 (smaller is better) 

 mdtmFTP FDT GridFTP BBCP 
TTC (second) 11 N/A 1006 6274 

Table 3 TTC - Folder transfer 2 (smaller is better) 

 
Figure 6 RPI – Folder data transfer 1 (larger is better) 

 
Figure 7 RPI – Folder data transfer 2 (larger is better) 

 

c. Large File Transfer: Third Party Mode 
Third party mode enables a client to control file transfer 
between two remote servers. It is very useful in a number of 
user cases. All these data transfer tools (mdtmFTP, BBCP, 
FDT, and GridFTP) all support 3rd party data transfer. 
However, only mdtmFTP and GridFTP can run 3rd party data 
transfer in ESNET testbed. Note: there is not a third system 
in the WAN loop, except nersc-tbn-1 and nersc-tbn-2. 
GridFTP and mdtmFTP can start data transfer on a 
designated data interface. However, FDT and BBCP do not 
have such a feature.      

Table 4 and Figure 8 show the resutls for the single large 
file transfer in third party mode. mdtmFTP is about three 
times faster than GridFTP. 

 
 mdtmFTP FDT GridFTP BBCP 

TTC (second) 35 N/A 107 N/A 

Table 4 TTC – Large file transfer (smaller is better) 



 
Figure 8 RPI - Large File Transfer (larger is better) 

d. Folder Transfer: Third Party Mode 
Table 5 and 6 show the results for two folder transfer 
secnarios in the third party mode: one contains 30 files with 
size of 10GB; the other is the standard Linux source tree.  
Only mdtmFTP supports folder transfer in the 3rd party 
mode. GridFTP does not support this feature. 

 mdtmFTP FDT GridFTP BBCP 

TTC (second) 96 N/A Not 
Working N/A 

Table 5 TTC - Folder transfer 1 

 mdtmFTP FDT GridFTP BBCP 

TTC (second) 10 N/A Not 
Working N/A 

Table 6 TTC - Folder transfer 2 
 

4. Conclusion 
To address the high-performance challenges of data transfer 
in the big data era, we are, developing and implementing 
mdtmFTP: a high-performance data transfer tool for big 
data. mdtmFTP has several salient features. First, it adopts 
an I/O centric architecture to execute data transfer tasks. 
Second, it can fully utilize the underlying multicore system. 
Third, it implements a large virtual file mechanism to 
address the lots-of-small-files (LOSF) problem. Finally, 
mdtmFTP integrates multiple optimization mechanisms—
zero copy, asynchronous I/O, pipelining, batch processing, 
and pre-allocated buffer pools—to optimize performance. 
mdtmFTP has been extensively tested and evaluated at 
ESNET 100G testbed. The evaluation shows that mdtmFTP 
achieves better performance than existing data transfer tools, 
such as GridFTP, FDT, and BBCP. 

Acknowledgement 
We would like to thank Brian Tienery who contributed to 
mdtmFTP evaluation @ ESNET testbed.  

5 REFERENCES 
[1] “Synergistic Challenges in Data-Intensive Science and 

Exascale Computing”, DOE ASCR Data Subcommittee 
Report 2013. 

[2] Eli Dart, Mary Hester, Jason Zurawski, “Basic Energy 
Sciences Network Requirements Review - Final Report 
2014”, ESnet Network Requirements Review, September 
2014, LBNL 6998E 

[3] Eli Dart, Mary Hester, Jason Zurawski, “Fusion Energy 
Sciences Network Requirements Review - Final Report 
2014”, ESnet Network Requirements Review, August 
2014, LBNL 6975E 

[4] Eli Dart, Mary Hester, Jason Zurawski, Editors, “High 
Energy Physics and Nuclear Physics Network 
Requirements - Final Report”, ESnet Network 
Requirements Workshop, August 2013, LBNL 6642E 

[5] Eli Dart, Brian Tierney, Editors, “Biological and 
Environmental Research Network Requirements 
Workshop, November 2012 - Final Report””, November 
29, 2012, LBNL LBNL-6395E 

[6] David Asner, Eli Dart, and Takanori Hara, “Belle-II 
Experiment Network Requirements”, October 2012, LBNL 
LBNL-6268E 

[7] Eli Dart, Brian Tierney, editors, “Advanced Scientific 
Computing Research Network Requirements Review, 
October 2012 - Final Report”, ESnet Network 
Requirements Review, October 4, 2012, LBNL LBNL-
6109E 

[8] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. 
Liming, and S. Tuecke, “GridFTP: Protocol Extension to 
FTP for the Grid,” Grid Forum Internet-Draft, Mar. 2001.  

[9] B. Allcock, J. Bresnahan, R. Kettimuthu, M. Link, C. 
Dumitrescu, I. Raicu and I. Foster, “The Globus Striped 
GridFTP Framework and Server,” SC'2005, 2005.  

[10] BBCP, http://www.slac.stanford.edu/~abh/bbcp/  
[11] http://mdtm.fnal.gov 
[12] Han, Huaizhong, et al. “Multi-path tcp: a joint congestion 

control and routing scheme to exploit path diversity in the 
internet.” IEEE/ACM Transactions on Networking 
(TON) 14.6 (2006): 1260-1271. 

[13] Wang, Bing, et al. “Application-layer multipath data 
transfer via TCP: schemes and performance 
tradeoffs.” Performance Evaluation 64.9 (2007): 965-977. 

[14] Iyengar, Janardhan R., Paul D. Amer, and Randall Stewart. 
“Concurrent multipath transfer using SCTP multihoming 
over independent end-to-end paths.” Networking, 
IEEE/ACM Transactions on 14.5 (2006): 951-964. 

[15] Gunter, Dan, et al. “Exploiting network parallelism for 
improving data transfer performance.” High Performance 
Computing, Networking, Storage and Analysis (SCC), 
2012 SC Companion:. IEEE, 2012. 

[16] Bresnahan, John, et al. "Gridftp pipelining." Proceedings of 
the 2007 TeraGrid Conference. 2007. 

[17] https://www.es.net/network-r-and-d/experimental-
network-testbeds/100g-sd 

[18] http://monalisa.cern.ch/FDT/ 
[19] S. Akram, M. Marazkis, and A. Bilas, “NUMA Implications 

for Storage I/O Throughput in Modern Servers,” In 3rd 
Workshop on Computer Architecture and Operating System 
co- design (CAOS'12), Paris, France, January 2012. 

[20] S. Moreaud, B. Goglin, “Impact of NUMA Effects on High-
Speed Networking with Multi-Opteron Machines,” In 
PDCS 2007, Cambridge, Massachussetts (2007).

 


